115 research outputs found

    Computability of simple games: A characterization and application to the core

    Get PDF
    The class of algorithmically computable simple games (i) includes the class of games that have finite carriers and (ii) is included in the class of games that have finite winning coalitions. This paper characterizes computable games, strengthens the earlier result that computable games violate anonymity, and gives examples showing that the above inclusions are strict. It also extends Nakamura's theorem about the nonemptyness of the core and shows that computable games have a finite Nakamura number, implying that the number of alternatives that the players can deal with rationally is restricted.Comment: 35 pages; To appear in Journal of Mathematical Economics; Appendix added, Propositions, Remarks, etc. are renumbere

    THE DISTANCE to M104

    Get PDF
    M104 (NGC 4594; the Sombrero galaxy) is a nearby, well-studied elliptical galaxy included in scores of surveys focused on understanding the details of galaxy evolution. Despite the importance of observations of M104, a consensus distance has not yet been established. Here, we use newly obtained Hubble Space Telescope optical imaging to measure the distance to M104 based on the tip of the red giant branch method. Our measurement yields the distance to M104 to be 9.55 +/- 0.13 +/- 0.31 Mpc equivalent to a distance modulus of 29.90 +/- 0.03 +/- 0.07 mag. Our distance is an improvement over previous results as we use a well-calibrated, stable distance indicator, precision photometry in a optimally selected field of view, and a Bayesian Maximum Likelihood technique that reduces measurement uncertainties. The most discrepant previous results are due to Tully-Fisher method distances, which are likely inappropriate for M104 given its peculiar morphology and structure. Our results are part of a larger program to measure accurate distances to a sample of well-known spiral galaxies (including M51, M74, and M63) using the tip of the red giant branch method.This is the author accepted manuscript. The final version is available from the Institute of Physics via https://doi.org/10.3847/0004-6256/152/5/14

    Star formation at the edge of the Local Group: a rising star formation history in the isolated galaxy WLM

    Get PDF
    © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society We present the star formation history (SFH) of the isolated (D ∼ 970 kpc) Local Group dwarf galaxy Wolf-Lundmark-Melotte (WLM) measured from colour-magnitude diagrams (CMDs) constructed from deep Hubble Space Telescope imaging. Our observations include a central (0.5 rh) and outer field (0.7 rh) that reach below the oldest main-sequence turn-off. WLM has no early dominant episode of star formation: 20 per cent of its stellar mass formed by ∼12.5 Gyr ago (z ∼ 5). It also has an SFR that rises to the present with 50 per cent of the stellar mass within the most recent 5 Gyr (z < 0.7). There is evidence of a strong age gradient: the mean age of the outer field is 5 Gyr older than the inner field despite being only 0.4 kpc apart. Some models suggest such steep gradients are associated with strong stellar feedback and dark-matter core creation. The SFHs of real isolated dwarf galaxies and those from the Feedback in Realistic Environment suite are in good agreement for M*(z = 0) ∼ 107-109M☉, but in worse agreement at lower masses (M*(z = 0) ∼ 105-107 M☉). These differences may be explainable by systematics in the models (e.g. reionization model) and/or observations (HST field placement). We suggest that a coordinated effort to get deep CMDs between HST/JWST (crowded central fields) and WFIRST (wide-area halo coverage) is the optimal path for measuring global SFHs of isolated dwarf galaxies

    Galactic Evolution along the Hubble Sequence

    Get PDF
    A generalization of the multiphase chemical evolution model applied to a wide set of theoretical galaxies is shown. This set of models has been computed by using the so-called Universal Rotation Curve from Persic, Salucci & Steel to calculate the radial mass distributions of each theoretical galaxy. By assuming that the molecular cloud and star formation efficiencies depend on the morphological type of each galaxy, we construct a bi-parametric grid of models whose results are valid in principle for any spiral galaxy, of given maximum rotation velocity or total mass, and morphological type.Comment: Proceedings of the Euroconference "The Evolution of Galaxies. III..." (Kiel 2002

    An Infrared Census of DUST in Nearby Galaxies with Spitzer (DUSTiNGS). IV. Discovery of High-redshift AGB Analogs

    Get PDF
    The survey for DUST in Nearby Galaxies with Spitzer (DUSTiNGS) identified several candidate Asymptotic Giant Branch (AGB) stars in nearby dwarf galaxies and showed that dust can form even in very metal-poor systems (Z∼0.008 Z⊙{\boldsymbol{Z}}\sim 0.008\,{Z}_{\odot }). Here, we present a follow-up survey with WFC3/IR on the Hubble Space Telescope (HST), using filters that are capable of distinguishing carbon-rich (C-type) stars from oxygen-rich (M-type) stars: F127M, F139M, and F153M. We include six star-forming DUSTiNGS galaxies (NGC 147, IC 10, Pegasus dIrr, Sextans B, Sextans A, and Sag DIG), all more metal-poor than the Magellanic Clouds and spanning 1 dex in metallicity. We double the number of dusty AGB stars known in these galaxies and find that most are carbon rich. We also find 26 dusty M-type stars, mostly in IC 10. Given the large dust excess and tight spatial distribution of these M-type stars, they are most likely on the upper end of the AGB mass range (stars undergoing Hot Bottom Burning). Theoretical models do not predict significant dust production in metal-poor M-type stars, but we see evidence for dust excess around M-type stars even in the most metal-poor galaxies in our sample (12+\mathrm{log}({\rm{O}}/{\rm{H}})=7.26\mbox{--}7.50). The low metallicities and inferred high stellar masses (up to ~10 M⊙{M}_{\odot }) suggest that AGB stars can produce dust very early in the evolution of galaxies (~30 Myr after they form), and may contribute significantly to the dust reservoirs seen in high-redshift galaxies

    SHIELD: Comparing Gas and Star Formation in Low Mass Galaxies

    Get PDF
    We analyze the relationships between atomic, neutral hydrogen (HI) and star formation (SF) in the 12 low-mass SHIELD galaxies. We compare high spectral (~0.82 km/s/channel) and spatial resolution (physical resolutions of 170 pc - 700 pc) HI imaging from the VLA with H\alpha and far-ultraviolet imaging. We quantify the degree of co-spatiality between star forming regions and regions of high HI column densities. We calculate the global star formation efficiencies (SFE, ΣSFR\Sigma_{\rm SFR} / ΣHI\Sigma_{\rm HI}), and examine the relationships among the SFE and HI mass, HI column density, and star formation rate (SFR). The systems are consuming their cold neutral gas on timescales of order a few Gyr. While we derive an index for the Kennicutt-Schmidt relation of N ~ 0.68 ±\pm 0.04 for the SHIELD sample as a whole, the values of N vary considerably from system to system. By supplementing SHIELD results with those from other surveys, we find that HI mass and UV-based SFR are strongly correlated over five orders of magnitude. Identification of patterns within the SHIELD sample allows us to bin the galaxies into three general categories: 1) mainly co-spatial HI and SF regions, found in systems with highest peak HI column densities and highest total HI masses, 2) moderately correlated HI and SF regions, found in systems with moderate HI column densities, and 3) obvious offsets between HI and SF peaks, found in systems with the lowest total HI masses. SF in these galaxies is dominated by stochasticity and random fluctuations in their ISM
    • …
    corecore